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Google‘s Gboard predicts „and“, „too“ 
and „so much“ on the context „I love you“ 
(Hard et al., 2018)
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𝑁 devices

Local model 𝑤1

Server
Local model 𝑤2

Local model 𝑤𝑁

Global model 𝑤𝑔

Federated Learning is about aggregating local models
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Day-ahead trading with a forecast horizon of 12 to 36 hours
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Data dependency High price commercial forecasts

Data sharing concernsData scarcity

All market participants face similar problems
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Data
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Client
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Data Data

Client

Local model

FederatedForecasts is about collaboration of competitors

Our partners:
BayWa r.e.

FORRS
Trianel

Vattenfall
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Literature FederatedForecasts

Park-level forecasts Plant-level forecasts

10 km

13 km

Client 1
Client 2

Client 3

Client 4

A client represents a diverse portfolio of parks



How does federated model aggregation work?
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Client 𝐶𝑖  sends local model weights 𝜔𝑖
𝑡+1 in

communication round 𝑡:

𝜔1
𝑡

…

𝜔2
𝑡

𝜔𝑖
𝑡

𝐶1 𝐶2 𝐶𝑖

𝜔𝑡

The key operation in federated learning is weighted averaging

𝜔𝑡 = ෍

𝑖=1

𝑁
𝑛𝑖

𝑛
𝜔𝑖

𝑡

Federated Averaging 
(FedAvg)

𝜔𝑡:     Global model in round 𝑡 
 𝑁:     Total number of clients 

 𝑛 = σ𝑖
𝑁 𝑛𝑖: Total number of training samples
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Generalization of federated averaging

FedAvg with 
Server Momentum

(FedAvgM)

𝑚𝑡+1 = 𝛽𝑚𝑡 + 𝜔𝑡 − σ𝑖=1
𝑁 𝑛𝑖

𝑛
 𝜔𝑖

𝑡+1  

FedAvg

Adaptive 
Federated Optimization

(FedAdam)

Server momentum

𝑚𝑡+1 = 𝛽1𝑚𝑡 + 1 − 𝛽2 ∆𝜔

𝑣𝑡+1 = 𝛽2𝑣𝑡 + 1 − 𝛽2 ∆𝜔 2
𝜔𝑡+1 = 𝜔𝑡 − 𝜂

𝑚𝑡+1

𝑣𝑡+1 + 𝜏

„Pseudo-gradient“

𝜔𝑡+1 = 𝜔𝑡 − 𝜂𝑚𝑡+1

∆𝜔

ℎ𝑖 𝜔𝑖 , 𝜔𝑡 = 𝐿𝑖 𝜔𝑖 +
𝜇

2
𝜔𝑖 − 𝜔𝑡 2

FedAvg 
+ proximal term

(FedProx)

Regularization parameter Adaptivity factor
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WT1 WT2 WT5

Global model
Server

WT6

Global vs local model: 

RMSE decreased by 43 % (Tang, 2024)

Karlsruhe University of Applied Sciences

Federated transfer learning when data is scarce

…
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𝜔𝑔

𝜔𝑙

Data Model training

Client

Aggregation

Server

Karlsruhe University of Applied Sciences

Personalize the model by dividing it into local and global layers
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WT1 WT2 WT5

Global model
Server

WT6

Fine-tuned model

Personalized vs unpersonalized: RMSE -28 % (Tang, 2024)

Karlsruhe University of Applied Sciences

Personalization further improves performance

… Global vs local: RMSE -43 % (Tang, 2024)



Which model to use in federated forecasting?
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CNN-LSTM to predict renewable energy production

X1

X2

X3

Xt

Input Convolutional Layers

Y1

Y2

Y3

Yt

OutputFully Connected LayerLSTM Layer
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𝜔𝑔

𝜔𝑙

Data Model training

Client

Aggregation

Server

Karlsruhe University of Applied Sciences

Personalize CNN in CNN-LSTM architecture
Zhang et al. (2023)



Which features to use in federated forecasting?
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𝜌:  Air density

𝑟:  Rotor radius

𝐶𝑝: Wind power coefficient

𝑣𝑖𝑛:  Cut-in wind speed

𝑣𝑛:  Rated wind speed

𝑣𝑜𝑢𝑡: Cut-out wind speed

𝑣:  Wind speed p:  Air pressure

T:  Air temperature

𝜑:   Relative humidity

ℎ:  Hub height

Wind power is modelled by the power curve
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PV power is the product of current and voltage

𝑃 = 𝐼 ⋅ 𝑉

V:  Voltage

I:  Current
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Higher irradiance results in higher power output
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Higher temperature results in lower power output
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Weather

Wind

PV

𝑣:       Wind speed
p:       Air pressure
𝜑:       Relative humidity

h:      Hub height
P:      Power curve

𝛽:      Tilt angle
r:      Rotation angle

𝐿𝑙𝑎𝑡:      Latitude
𝐿𝑙𝑜𝑛:    Longitude

𝐷𝐻𝐼, 𝐷𝑁𝐼:  Irradiance 

𝑇:       Air temperature
𝜑:       Relative humidity

𝑣:          Wind speed
PR:       Precipitation 
𝐷:       Dew point

𝜂:       Albedo

𝑇:       Air temperature

Site-specific information

𝑃𝑀:        Particulate matter

In FL, weather AND site-specific information is important
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Sun
Zenith

South (180° Azimuth)
West (270° Azimuth)

North (0° Azimuth)
East (90° Azimuth)

𝜃

𝛾
𝛼

𝜃:   Zenith angle

𝛾:   Azimuth angle

𝛼:   Altitude angle

Global tilted irradiance (GTI):

𝐺𝑇𝐼 = 𝐷𝐻𝐼 ⋅ (1 + cos 𝛽)/2
     + 𝐷𝑁𝐼 ⋅ cos 𝜃𝑇

   + 𝐺𝐻𝐼 ⋅ 𝜂 ⋅ (1 − cos 𝛽)/2

𝜃𝑇:   Angle of incidence

cos 𝜃𝑇 = cos 𝛽 cos 𝜃 + sin 𝛽 sin 𝜃 cos(𝛾 − 𝑟)

𝑟:  Rotation angle from the north-south axis

𝛽:  Tilt angle from the horizontal

𝜂:  Average albedo (ground reflectivity)

*

*Assumption of isotropy

The GTI contains site-specific features
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Success factors for federated forecasting of renewable energy

Adaptive 
Aggregation

Strategy

Personal-
ization

Hybrid
Model

Feature
Engineering
Constants



Thank You!

Viktor Walter | viktor.walter@h-ka.de


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

