

Al in dispatching for a more modern railroad

Agenda

Al in dispatching

KI Dispo – railway company dispatching

ADA-PMB

While ADA-PMB aims to improve overall punctuality within the railway network, KI Dispo improves passenger/customer punctuality

Goals & Procedures of KI Dispo & ADA-PMB

Dr. Hannah RichtaHead of Algorithms for Operations (DB InraGO)
Responsible for implementation of algorithmic train scheduling in the network

Torsten Deutsch Head of Lane Rail Operations, Al Factory Responsible for expansion of existing Al approaches in dispatching

ADA-PMB

Goals: Improving overall punctuality within the railway network through algorithm-based dispatching re-commendations for infrastructure dispatchers

Procedure: Mix of different AI methods with a focus on mathematical optimization

KI Dispo

Goals: Improving of passenger/customer punctuality by dispatching suggestions for railway company dispatchers with a focus on traffic and resource dispatchment

Procedure: Artificial intelligence/ reinforcement learning in combination with simulation

Dispatching is a team sport – decision-making and data are distributed between railway and infrastructure companies

Overall Dispatching Process

Railway Company Dispatching

Al in dispatching for a more modern railroad

Agenda

Al in dispatching

KI Dispo – railway undertaking dispatching

ADA-PMB – railway infrastructure

Status Quo: the typical tasks and challenges of a traffic dispatcher in a railway company

Traffic Dispatcher railway company

TASKS

- Monitoring of the current operational situation to secure the traveller chain
- Responsible for train changes & schedule to increase the punctuality

CHALLENGE

- Increasing traffic volume
- **Network extensions**
- Limited ressources

RESULTS

The traffic dispatcher is under **high pressure**. At some point, the human eye is no longer able to keep track of everything and calculate the impact of every decision.

Current tools only help to a limited extent in finding the "best" decision.

AI SUPPORTS VIA...

- Creation of **recommendation** through learning algorithms
- Data-based and quantitative **evaluation** of recommendation
- **Integration** in the relevant IT-Landscape of the DB

THE DISPATCHER RETAINS FULL AUTHORITY TO ACT

Clear structuring of the system reduces complexity

Digital Twin

- Digital twin of the railway network
- Analysing optimal traffic flow
- Identification of conflicts

Recommender

- Training and evaluation workflow that interacts with the Simulation
- Generation of proposals to solve possible conflicts in advance through preventive actions

User Interface

- Integrate the tool into the daily routine of the dispatcher
- Combination of simulation and AI enables to visualize the impact of an action up to one hour in the future

Continuous collaboration with end users

AMBITION

Acceptance and **enthusiasm** by creating an aligned understanding of AI solutions

Ensure effective project support through **user-centric product development**

Connecting train production and Al **expertise** for a sustainable process integration

Product is effective and accepted

User involvement from day one!

PATH

Bringing together the experts of train production and AI within different formats

- □ Intensive test phases
- ☐ Visit control centres on a monthly basis
- Integration of feedback opportunities in UI

Sharing information via different channels to ensure knowledge exchange

- Online updates
- Tutorials
 - E-learning videos

Al in dispatching for a more modern railroad

Agenda

Al in dispatching

KI Dispo – railway undertaking dispatching

ADA-PMB – railway infrastructure

Dispatching is a key factor for short-term optimization of railway infrastructure – main challenge is the lack of systemic assistance

Dispatching Goals & Challenges

Goals & functions¹

Ensuring maximum operational quality to achieve a high level of overall planning reliability dispatchers...

- determine the order of trains & monitor the execution of their decisions
- give advice on the operating behavior of trains & pay attention to the dispatching implementation
- inform the traffic controller and the infrastructure dispatcher in the case of delays & transmit traffic controller requests for deviations from train characteristics to the dispatcher

Challenges

- No systemic support for conflict detection and optimized dispatching solutions
- Complexity of the situations to be managed not represented in the dispatching system
- High workload under time pressure, especially in degraded situations
- Loss of expertise due to demographic change & shortage of skilled professionals

ADA-PMB calculates the minimum delay solution and translates dispatching recommendations into comprehensible displays

Display of Dispatching Recommendations

In the function of a co-pilot, ADA-PMB indicates conflicts and offers a recommend-dation for an optimized solution.

ADA-PMB uses live data from the dispatching system to generate recommendations based on optimization with additional AI input

ADA-PMB Process Steps

1

Input data

Pre-process

Optimizer

3

Post process

- Original data from dispatching centers
- Infrastructure, its availability restrictions, schedule and train data
- Setting up the optimization model (mathematical model of variables and inequalities)
- Supplementary creation of hints to accelerate optimiza-tion using heuristics and machine learning (AI method mix)
- Minimization of the total delays through mixed integer optimization
- Optimal solution in the operating area
- Complies with non-discrimination requirements

 "Translating" the solution into comprehensible dispatching recommend-dations

ADA-PMB implemented in 4 regions – measurable reduction of delay minutes & positive feedback from dispatchers

ADA-PMB in Practice

2020 first pilot with S-Bahn Berlin dispatching center on a section of the Berlin S-Bahn network launched

2023 further expansion of piloting with the support of the "Digitaler Produktionsverbund" (DPV): **Stuttgart – Plochingen** and **Munich S-Bahn main line**

Mainly **positive feedback** from dispatchers. Continuous development of ADA-PMB based on the feedback.

Measurement of effectiveness in Frankfurt/Main based on threading recommendation shows:

- In 70% of the cases analyzed, trains were dispatched as suggested by ADA-PMB
- Disposition according to the order suggested by ADA-PMB leads to an improvement of the relative position by 100 seconds compared to an order deviating from the recommendation

Thank you. Any questions?

Dr. Hannah Richta

Algorithms for Operations (I.IBB 13) ADA-PMB

hannah.richta@deutschebahn.com

Adam-Riese-Str. 11-13 60327 Frankfurt a. Main

Torsten Deutsch

Deutsche Bahn AG
Al Factory, Leiter Factory Lane Bahnbetrieb
torsten.deutsch@deutschebahn.com
Stresemannstraße 123
10963 Berlin

