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Prediction target

Aim: Forecasting the incidence of organized armed violence

Number of fatalities in state-based armed conflict

@ a contested incompatibility that concerns government and/or
territory where the use of armed force between two parties,
of which at least one is the government of a state, results in

at least 25 battle-related deaths in one calendar year.
@ Data from Uppsala Conflict Data Program
e Monthly candidate = annual final events data

Update schedule, production system
@ Monthly updates
o Forecasts for all of 1-36 months into the future
e Country and geographical /PRIO-GRID level

Developed since 2017 at PRIO (Peace Research
Institute Oslo) and Uppsala University

Forecasts based on data up
to December 2022, Country
(top) and PRIO-GRID
(bottom



https://www.pcr.uu.se/research/ucdp/definitions/##incompatibility_2
https://www.pcr.uu.se/research/ucdp/definitions/##Government_2
https://www.pcr.uu.se/research/ucdp/definitions/##State
https://www.pcr.uu.se/research/ucdp/definitions/##Battle-related_deaths
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Transparency

VIEWS strives for maximal transparency

@ Open data sources
@ Open source code
e https://github.com/prio-data/
viewser/wiki
o https:
//github.com/viewsforecasting
@ Publicly available forecasts
o https://viewsforecasting.org
@ Publicly available evaluation

o https:
//doi.org/10.1177/0022343320962157

e http://uu.diva-portal.org/smash/
get/diva2:1667048/FULLTEXTO1.pdf

Predicted number of fatalities in
2023, Africa and the Middle East

Total predicted fatalties, next 12 months
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https://github.com/prio-data/viewser/wiki
https://github.com/prio-data/viewser/wiki
https://github.com/viewsforecasting
https://github.com/viewsforecasting
https://viewsforecasting.org
https://doi.org/10.1177/0022343320962157
https://doi.org/10.1177/0022343320962157
http://uu.diva-portal.org/smash/get/diva2:1667048/FULLTEXT01.pdf
http://uu.diva-portal.org/smash/get/diva2:1667048/FULLTEXT01.pdf

Challenges

The prediction problem: Major challenges

Data sparseness: Theoretical challenges:
@ Most observations are zero @ Armed conflicts have multiple
e 87% of country months causes
0 B . .
* 99% of PRIO-GRID months @ Latent risk unobservable until

@ Non-zeros strongly right-skewed outbreak

e = power-law distribution e ..
P e War initiation decisions fraught

@ Strong autocorrelation with fundamental uncertainty

Scatterplot for statebased conflict at t vs at t 1, logged. 2018-2022, cm

300 Non-zero all types conflict density plot, logged, 19902022, pgm
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Methodology OIS

Methodology, current system

Building-block constituent models
@ Separately by:

o Country and geographical level
e Each step forward

@ Combinations of feature sets and algorithms
Ensembles

o Calibration

o Weighting
Partitioning: ‘Leave the future out’

@ 1990-2013: Train models

@ 2014-2017: Estimate weights, hyper-parameters, calibration
@ 2018-2021: Test

o Repartition for true future forecasts
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Infrastructure

Infrastructure: main components

@ Data in SQL database
@ Bespoke code to ingest data
into database

@ ‘viewser': queryset system to:

o Retrieve data
e Transform features

Jupyter notebook / Python code

@ viewser APl can be imported
into any Python code

@ Model organization in Python
scripts/notebooks

VIEWS data system

parquet file

transformer

data
cache

(on, e.g., personal laptop) 1 (on remote server)
- [] -
http request Docker envi Database
| viewser |mss=l| Queryset | = »\ gateway |
. =
1
queryset queryset
L] manager definitions
[ ] —
L] v
! data fetcher/
ML code pataFrame | g v ata fetche e | raw data ‘
: 1
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]
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e lellea2 8 Machine-learning models

Machine-learning models

Core models: Decision-tree models
e Random forests (XGB implementation)
e Gradient boosting models (XGB /LGB /sklearn implementations)

Distribution of outcome challenge —
Solutions:
e Predicting log(Y + 1)
@ Hurdle models (Fritz et al. 2022)
o Learn probability of non-zero

- observations p,, = p(Y > 0)
o Learn number of fatalities if non-zero
Yo =Y|Y >0

o Combined prediction Y = pn, X Y,

e Markov models (Randahl and Vegelius
2022)
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Predictors: country level

‘Feature sets’:
o Conflict history

o Lots of lags, decay functions
e Spatially and temporally

e Political institutions (V-Dem)
e Development (WDI)

@ News monitoring, topic model
(Mueller and Rauh 2018)

Selected indicators:

@ Conflict in country previous
months

@ Conflict in neighboring countries
@ Liberal democracy

@ Infant mortality rates

Methodology | =lleieis

Burkina Faso, January 2017

Burkina Faso, April 2017
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Methodology

Predictors: grid-cell level

‘Feature sets’:
@ Conflict history

e Lots of lags, decay functions
e Spatially and temporally

o Natural geography features
(terrain, resources)

@ Social geography features
(cities, borders, demography)

e Climate: drought, growing season
e Protests (from ACLED)
Selected indicators:
@ Conflict in cell and neighboring cells
@ Distance to oil extraction

@ Protests

Predictors

Agricultural drought, June 2018
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Ensembling

Ensemble of models that perform well but
are reasonably diverse

@ 'Wisdom of the crowd’ — most wise
when diverse and competent

@ Ensembling safeguards against
overfitting

e But can be over-fit to calibration
partition

@ Country-level model weights trained
using a genetic algorithm

@ Optimizing on mean squared error of
prediction across all cases

Methodology | =i:=es

MSE
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Evaluation metrics

Out-of-sample evaluation and development

@ What constitutes a good prediction?

e Current main metric: Mean Squared Error (of In(Y + 1))

@ The square of the difference between what we predict and what
actually happened

@ Favors models well calibrated at large

Useful at cm level, not so useful at pgm
@ Tends to favor ‘nihilistic’ models — e.g. models that predict no change

@ Bin-by-bin evaluation inappropriate
o Alternative metric based on ‘earth-mover distance’

We may be more interested in the probability of extreme events

than in the point prediction
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How well do we predict?

MSEs at country level between .25
and .75

(3,10]

(30, 100] -

+300, 1000] = ]

i " T 1
10° 10 10° 10°

Observed number of fatalities

Methodology

Evaluation

How many were killed per country if we
predict the following 12 months into the
future:

@ 3-10 fatalities:

o 50% are 1 or higher, median
observation is 1, and 95% are
below 30

@ 30-100 fatalities:
e 90% are between 30 and 200
@ 300-1000 fatalities:

e all are above 100, and 90%
are above 800
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Which features are important?

Conflict Neighboring
history (.877) conflict (.360)

536 Confiict history, variance explained: 0.877

536 Neighborhood conflic, variance explained: 0.360
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Conflict (.505)

536 Topics: conflict and conflct stock, variance explained: 0.505

Population
size (.212)

536 Population, variance explained: 0.212
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Next steps

Strengths, shortcomings, next steps

Strengths:
@ Model works well for current conflict situations
@ Most violence occurs in these

Shortcomings and suggested solutions:
@ Forecasting onset of conflict is very hard

e Improve models and input features
o Rephrase optimization criteria to give more weights to onsets

o Fatality model yields only point predictions
e Model prediction uncertainty

Other next steps:
@ Neural nets

@ Actor layer
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Sources of uncertainty in prediction modeling

Aim:
@ To produce VIEWS forecasts as probability distributions over possible
fatality counts
Why?
@ Users want to know the uncertainty of predictions

@ Point predictions yield the most likely outcome, but we are interested
in low-probability, catastrophic events
How to reach this?

@ Create ‘draws’ by combining forecasts from:

o Constituent models
e Bootstraps of input data
o Realizations from measurement models

@ Bootstraps from predictions/conformal predictions
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Next steps N LI[TAGETES

Uncertainty regarding input data: measurement models

© How many did really die in each conflict?
o What is documentable (and when) versus what really happened
@ Solution: Complementing UCDP’s ‘best’ estimates with probability
distributions over the true values
@ Distribution obtained through an expert elicitation
@ When and where did violence occur?

e ‘Known geographic imprecision’ — UCDP notes location is imprecise
and assigns placeholder location

o Estimate the spatial probability distribution for each conflict
o Randomly draw location based on distribution

© Candidate data are imperfect approximations to final data
e Solution: ‘now-cast’ final GED data using a ML model
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Next steps I=EEIEE))

Uncertainty in model evaluation

Our test dataset is just a sample
@ Statistical uncertainty regarding the evaluation metric
@ Solution: bootstrapping
More fundamentally:
@ What are the best evaluation metrics?
@ Test window seen as a sample
Evaluation metrics designed for predictions as probability distributions
e CRPS
@ Interval scores

@ Ignorance score
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245505 Prediction competition

VIEWS 2023/24 prediction competition

Prediction competition:

INTERNATIONAL INTERACTIONS 1) Routledge
ot rg 03080 530504252072 2029856 TorFanc ron

@ Predicting the number of B0 access B

United They Stand: Findings from an Escalation

fatahtles from Organized Prediction Competition
political violence as probability o hdie 5 o hehen . on s 5 e &

“Uppsala University; "Peace Research Institute Oslo; ‘University of Pittsburgh; “University of

d | st ri b ut | ons Wisconsin-Madison; “Formerly German Federal Foreign Offce; University of Konstanz

e xerwonos
. This article presents results and lessons learned from a predic-  Confict escalation;
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scientfic knowledge on forecasting (de-Jescalation in Africa,  Violence; prediction
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well-defined challenge e o ol e e
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@ Predecessor: L T
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o International Interactions e
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. that futy titions that build on both the d
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https://www.tandfonline.com/doi/full/10.1080/03050629.2022.2029856
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Prediction competition

Overview

@ For state-based conflict

e Number of fatalities as recorded by the
UCDP

For two levels of analysis

e Per country

o Per ‘grid cell’

o Global coverage at country level

e Africa and the Middle East at grid level
(13,000 cells)

Two prediction windows

e True future: The year of 2024

o Test set: Each of the years 2019-2022

o All forecasts based on data up to and
including October the year before Predicted fatalities in Dec-22

Main evaluation metric: CRPS
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W[5 505 Prediction competition

Structure of contributions

@ Short summary of model/contribution, basis for introduction article

@ 3-5 page write-up of model/contribution, for workshop and as
working paper
@ Forecasts:
o The true future:

@ Predictions for all months of 2024, based on data up to October 2023
@ Month-by-month evaluation updates on VIEWS website

Four sets of test predictions:

o Predictions for all months of 2019, 2020, 2021, 2022, for data up to
October the month before

Unit of analysis:
o Either country-month or PRIO-GRID-month
Format:

e Up to 1,000 draws from the prediction distribution
@ or, point estimates (we will generate samples)

20/22



Time frame, tentative

W[5 505 Prediction competition

https://viewsforecasting.org/prediction-competition-2/

Early March 2023: formal invitation to participate

15 May 2023: Deadline for abstracts for participants; data and cod
to participants

About 1 October 2023: Workshop for (selected) contributors.
Contributors submit preliminary forecasts and summary papers just
before

1 December: Providing all participants with updated data
10 December: Contributors submit the final predictions

1 January 2024: Start of prediction window

31 December 2024: End of forecasting window

e
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https://viewsforecasting.org/prediction-competition-2/

Questions?

Contact:
hhegre@prio.org or views@pcr.uu.se

Websites:
http://viewsforecasting.org

https://www.prio.org/projects/1976

Newsletter:
Email views@pcr.uu.se to register

Thanks to the VIEWS team for all the work
on data, modeling and presentation!
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