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Machine learning is inseparably connected with uncertainty
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Trustworthy machine learning

o Many applications require safe and reliable predictions, and hence a
certain level of self-awareness of ML systems:

» equip predictions with an appropriate quantification of uncertainty,
» reject a decision in cases of high uncertainty (abstention) ,

» deliver a credible set-valued prediction (partial abstention),

o

Driver assistance systems: a safety-critical application

GDSD 2021, E. Hiillermeier

3/41



Lack of uncertainty-awareness

Example of a lack of “uncertainty-awareness”:

Predictions by EfficientNet (Tan and Le, 2019) on test images from ImageNet:
For the left image, the neural network predicts “typewriter keyboard” with
certainty 83.14 %, for the right image “stone wall” with certainty 87.63 %.
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Aleatoric versus epistemic uncertainty

o Traditional approaches in ML fail to distinguish inherently different
sources of uncertainty, often referred to as aleatoric and epistemic
uncertainty (Hora, 1996; Der Kiureghian and Ditlevsen, 2009).

o Motivated in the context of ML for medical diagnosis by Senge et al.
(2014), increasing attention more recently due to interest by the deep
learning community (Kendall and Gal, 2017).
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Aleatoric versus epistemic uncertainty

o Aleatoric (aka statistical) uncertainty refers to the notion of
randomness, that is, the variability in the outcome of an experiment
which is due to inherently random effects.

o Epistemic (aka systematic) uncertainty refers to uncertainty caused
by a lack of knowledge, i.e., to the epistemic state of the agent.

o As opposed to aleatoric uncertainty, epistemic uncertainty can in
principle be reduced on the basis of additional information.

:
GDSD 2021, E. Hiillermeier 6/41



Aleatoric versus epistemic uncertainty

“kichwa”

“Not knowing the chance of mutually exclusive events and knowing the
chance to be equal are two quite different states of knowledge"

Ronald Fisher (1890-1962)
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Aleatoric versus epistemic uncertainty in ML
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Aleatoric versus epistemic uncertainty in ML
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Aleatoric versus epistemic uncertainty in ML
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Is the uncertainty aleatoric or epistemic?
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Aleatoric versus epistemic uncertainty in ML
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Problem setting and assumptions

o A precise specification of the problem setting and underlying
assumptions is an important prerequisite, not only for providing
learning guarantees, but also for uncertainty quantification.

Possibly out of distribution, or is
this definitely excluded?
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o Here, one might be quite sure about the class of the query under
standard assumptions of binary classification, but much less so in a
setting of novelty detection, where new classes may emerge.
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Supervised learning and predictive uncertainty

o Uncertainty occurs in various facets in machine learning, and different
settings and learning problems will usually require a different
handling from an uncertainty modeling point of view.
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Supervised learning and predictive uncertainty

o Uncertainty occurs in various facets in machine learning, and different
settings and learning problems will usually require a different
handling from an uncertainty modeling point of view.

o Here, we focus on the standard setting of supervised learning and

predictive uncertainty:

background knowledge

training data D

induction  learning
principle  algorithm

MODEL INDUCTION

h = Ind(D)

test data @

MODEL h: X — Y

predictions § = h(z)
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Supervised learning and predictive uncertainty

o Uncertainty occurs in various facets in machine learning, and different
settings and learning problems will usually require a different
handling from an uncertainty modeling point of view.

o Here, we focus on the standard setting of supervised learning and
predictive uncertainty:

induction  learning

rinciple  algorithm
P P & test data @

background knowledge MODEL INDUCTION -
’ MODEL h: X — Y ‘

training data D h = Ind(D)

predictions § = h(z)

o Assuming probabilistic data generation P(x,y) = P(x)P(y | x),
probabilistic predictors (estimating P(y | x)) are natural primitives.
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Supervised learning and predictive uncertainty

o A learner is given access to a set of (i.i.d.) training data

D := {(X17y1)7"'7(XN7yN)} C & x y )

where X is an instance space and ) the set of outcomes.
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Supervised learning and predictive uncertainty

o A learner is given access to a set of (i.i.d.) training data

D := {(X17y1)7' "7(XN7_yN)} C & x y )

where X is an instance space and ) the set of outcomes.
o Given a hypothesis space % C Y and a loss function

(:YxY R,

the goal of the learner is to induce a hypothesis h* € H with low risk

R(R) = [, Hh(0.y)dP(x.y)
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Supervised learning and predictive uncertainty

o A learner is given access to a set of (i.i.d.) training data

D= {(X17y1)7' "7(XN7_yN)} C & x y )

where X is an instance space and ) the set of outcomes.
o Given a hypothesis space % C Y and a loss function

£:YxY—R,
the goal of the learner is to induce a hypothesis h* € H with low risk

R(R) = [, Hh(0.y)dP(x.y)

o The learner’s choice is commonly guided by the empirical risk

emp Z E
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Supervised learning and predictive uncertainty

o Yet, since Remp(h), or any variant lAi’emp, is only an estimation of the
true risk R(h), the hypothesis (e.g., the ERM)

h:= arg min Remp(h)
heH

will normally not coincide with the true risk minimizer

h* := arg min R(h).
heH
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Supervised learning and predictive uncertainty

o Yet, since Remp(h), or any variant IA?emp, is only an estimation of the
true risk R(h), the hypothesis (e.g., the ERM)

h:= arg min Remp(h)
heH

will normally not coincide with the true risk minimizer

h* := arg min R(h).
heH
o Correspondingly, there remains uncertainty regarding h* as well as

the approximation quality of h (in the sense of its proximity to h*)
and its true risk R(h).
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Supervised learning and predictive uncertainty

o Yet, since Remp(h), or any variant IA?emp, is only an estimation of the
true risk R(h), the hypothesis (e.g., the ERM)

h:= arg min Remp(h)
heH

will normally not coincide with the true risk minimizer

h* := arg min R(h).
heH
o Correspondingly, there remains uncertainty regarding h* as well as

the approximation quality of h (in the sense of its proximity to h*)
and its true risk R(h).

o Eventually, one is often interested in the predictive uncertainty, i.e.,
the uncertainty related to the prediction j4 for an individual (query)
instance xq € X.
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Agenda

Introduction

Sources of uncertainty in supervised learning
Modeling approximation uncertainty

Ensemble methods for uncertainty quantification

Conclusion and outlook
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Sources of uncertainty

(7=
o

approximation |
uncertainty |
1

X

2
““model
uncertainty

hypothesis space
HCF

- /

point prediction  probability

ground truth *(x) p(- | x)
best possible h*(x) p(-| x, h*)
induced predictor h(x) p(- | x, h)

GDSD 2021, E. Hillermeier

17/41



Sources of uncertainty

o A query instance x4 gives rise to a conditional probability on V:

X :P(Xq’Y)
p(yl q) p(xq)
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Sources of uncertainty

o A query instance x4 gives rise to a conditional probability on V:

X :P(Xq’Y)
P(y | xq) Tpixe)

o Thus, even given full information in the form of the measure P (and
its density p), uncertainty about the actual outcome y remains.

o This uncertainty is of an aleatoric nature.
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Sources of uncertainty

o A query instance x4 gives rise to a conditional probability on V:

X :P(XmY)
P(y | xq) Tpixe)

o Thus, even given full information in the form of the measure P (and
its density p), uncertainty about the actual outcome y remains.
o This uncertainty is of an aleatoric nature.

o The best point predictions (minimizing expected loss) are prescribed
by the pointwise Bayes predictor f*:

F*(x) = arg min | £(y.9)dP(y|x).
yey JY
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Sources of uncertainty
o The Bayes predictor does not necessarily coincide with the pointwise
Bayes predictor.

o This discrepancy between h* and f* is connected to the uncertainty
regarding the right type of model to be fit, and hence the choice of
the hypothesis space H.

o We shall refer to this uncertainty as model uncertainty.
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Sources of uncertainty
o The Bayes predictor does not necessarily coincide with the pointwise
Bayes predictor.

o This discrepancy between h* and f* is connected to the uncertainty
regarding the right type of model to be fit, and hence the choice of
the hypothesis space H.

o We shall refer to this uncertainty as model uncertainty.

o Due to model uncertainty, one cannot guarantee
h(x) = f(x),
or, in the case of probabilistic predictions p(y | x, h*), that

p(-[x,h") = p(-x).

GDSD 2021, E. Hillermeier 19/41



Sources of uncertainty

o Hypothesis h produced by the learner is an estimate of h*.

o The quality of this estimate strongly depends on the quality and the
amount of training data.

o We refer to the uncertainty about the discrepancy between h and h*
as approximation uncertainty.

o Both model and approximation uncertainty are of epistemic nature.

:
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Reducible versus irreducible uncertainty

o One way to characterize uncertainty as aleatoric or epistemic is to
ask whether or not it can be reduced through additional information.

o Aleatoric uncertainty refers to the irreducible part of the uncertainty,
which is due to the stochastic dependency between instances x and
outcomes y.

flipping a biased coin

o Model uncertainty and approximation uncertainty are subsumed under
the notion of epistemic uncertainty, that is, uncertainty due to a lack
of knowledge about the perfect predictor.

o In principle, these uncertainties are reducible.
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Reducible versus irreducible uncertainty

o But what does “reducible” actually mean?

o An obvious source of additional information is the training data D:
Uncertainty can be reduced by observing more data, ...

o ... while the problem setting (X, ), H, P) remains fixed.
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Reducible versus irreducible uncertainty

o But what does “reducible” actually mean?

o An obvious source of additional information is the training data D:
Uncertainty can be reduced by observing more data, ...

o ... while the problem setting (X, ), H, P) remains fixed.
o In practice, this is of course not always the case.

o For example, a learner may decide to extend the description of
instances by additional features, thereby replacing the current
instance space X’ by another space X”.

o Thus, aleatoric and epistemic uncertainty should not be seen as
absolute notions. Instead, they are context-dependent in the sense
of depending on the setting (X, ), H,P).
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Reducible versus irreducible uncertainty
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Left: The two classes are overlapping, which causes (aleatoric) uncertainty
in a certain region of the instance space. Right: By adding a second
feature, and hence embedding the data in a higher-dimensional space, the
two classes become separable, and the uncertainty can be resolved.
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Approaches for representing uncertainty in ML
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Approaches for representing uncertainty in ML
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Bayesian agents

o Explicit attempts at uncertainty quantification separating between
aleatoric and epistemic uncertainty were made by Mobiny et al.
(2017) and Depeweg et al. (2018).

o Here, in the context of regression with DNNs, epistemic uncertainty
corresponds to uncertainty about network weights, but the idea can
be generalized toward other models.
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Bayesian agents

o Explicit attempts at uncertainty quantification separating between
aleatoric and epistemic uncertainty were made by Mobiny et al.
(2017) and Depeweg et al. (2018).

o Here, in the context of regression with DNNs, epistemic uncertainty
corresponds to uncertainty about network weights, but the idea can
be generalized toward other models.

o Measuring total uncertainty in a prediction Y = Y|X in terms of
Shannon entropy of p = h(x)

S(Y)=S — > p(y)logp(y),
yey

the idea is to exploit the following information-theoretic
decomposition:

S(Y) = I(Y,H)+S(Y|H).
—— —_—_—— ——
total uncertainty epistemic aleatoric

GDSD 2021, E. Hillermeier 27/41



Bayesian agents

o I(Y, H) is the mutual information between hypotheses and
outcomes (i.e., Kullback-Leibler divergence between joint distribution
of outcomes and hypotheses and product of marginals):

I(Y,H) = Epy n {Iogz (M)} .

o Intuitively, epistemic uncertainty thus captures the amount of
information about the hypothesis that would be gained through
knowledge of the true outcome y.

o The conditional entropy is given by

5(Y|H) = Ep(h|D) {S(P(Hh))} =

z—Ap(h\D) (Zp(y\h)logzp(y!h)) dh .

yey
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Ensemble methods for uncertainty quantification

+ .+
+ %‘% data

h] h2 ............... hM

91 = hi(x) G2 = ha(x) v v = hy(x)

o Ensemble can be seen as an approximation of a distribution.

o Intuitively, diversity is an indicator for epistemic uncertainty.
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Bayesian agents: Ensemble-based approximation

o Recall what is needed for the proposed uncertainty quantification:

» Probabilities p(y) = p(y | x) to compute entropy S(Y):

o) = | by |K)aP(h| D)
» Expectation for the conditional entropy:

S(Y|H):/HS(Y|h)dP(hD)

o The idea is to approximate the integrals by (weighted) averages
over the ensemble members.

:
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Bayesian agents: Ensemble-based approximation

o Based on an ensemble H = {hy,..., hy} of hypotheses, an
approximation of conditional entropy can be obtained by

AU(x) = —*Z > p(y|hi)loga p(y | hi)
i=1 \yey
an approximation of total uncertainty (Shannon entropy) by

1M 1M
Ux)=-> (M > by h,-)) log, (M > p(y| hf)> ,
i=1 i=1

yey

p(y) p(y)

and an approximation of epistemic uncertainty (mutual information)
by the difference, which is equivalent to Jensen-Shannon
divergence of the distributions p(y | hi,x), i=1,..., M.
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Bayesian agents: Ensemble-based approximation

Y1 Y2 . YK entropy
hi(x)  p11 P12 .- PLK s1
ha(x) P21 P22 ... P2k )
hm(x) pvi pPm2 - PMK Sm
h pp P2 ... PK s|s

U(x) = s = entropy of average probabilities
AU(x) = s = average of entropies
EU(x) = U(x) — AU(x)
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Bayesian agents: Ensemble-based approximation

o For neural networks, it has been shown that techniques such as
Dropout (Gal and Ghahramani, 2016) and DropConnect (Mobiny
et al., 2017) can be interpreted as (implicit) ensemble methods, and
can hence be used to implement this approach.
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Bayesian agents: Ensemble-based approximation

o Of course, any other ensemble technique could be used as well.

o We proposed an implementation based on Random Forests, using
decision trees that predict probabilities in terms of (Laplace-corrected)
relative frequencies (Shaker and Hiillermeier, 2020).

$%5)
0)0))

o¥e)
00Q

©)
Q

N
2~
)¢}
o%0
o)
0
@)
L0

©)
~|0 O

™
o
-

:
GDSD 2021, E. Hillermeier 35/41



Evaluation

o Quality of uncertainty quantification was evaluated (indirectly) in
terms of accuracy-rejection curves.
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Evaluation

o Quality of uncertainty quantification was evaluated (indirectly) in

terms of accuracy-rejection curves.

o Results for two approaches, DNN with DropConnect and Random

Forests, both for aleatoric (above) and epistemic (below) uncertainty:
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Epistemic uncertainty sampling

o The idea of epistemic uncertainty sampling is to use a measure of
epistemic (instead of total) uncertainty in uncertainty sampling for
active learning (Nguyen et al., 2019).
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Conclusion and outlook

o We highlighted the importance of uncertainty in ML and the benefits
of distinguishing between different types of uncertainty, notably
aleatoric and epistemic.

o In a Bayesian setting, epistemic uncertainty is reflected by the
“peakedness” of the posterior p(h| D) on H resp. p(y | x) on V.

o We considered an information-theoretic approach to uncertainty
quantification and its realization by means of ensemble learning.

o Ongoing work on generalizations (Levi and GS agents), building on
generalized uncertainty calculi.

o Model uncertainty is also important, but difficult to capture.

o Many applications can benefit from “uncertainty-informed” decisions.

:
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Abstract

‘The notion of uncertainty is of major importance in machine leamning and constitutes a key
element of machine learning methodology. In line with the statistical tradition, uncertainty
has long been perceived as almost synonymous with standard probability and probabilistic
predictions. Yet, due to the steadily increasing relevance of machine learning for practical
applications and related issues such as safety requirements, new problems and challenges
have recently been identified by machine learning scholars, and these problems may call for
new methodological developments. In particular, this includes the importance of
distinguishing between (at least) two different types of uncertainty, often referred to as
aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty
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