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LHG`s pricing at their .coms

Query: 18.02.2019
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LHG`s pricing at their .coms

Query: 18.01.2019
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Why do the prices change?

Query: 18.12.2018
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Why do the prices change?

The motivation of the airline revenue management problem.
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Each passenger consumes capacity for every routing that is used 

to build the requested journey. 
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Accepted

To optimize revenue in situations where the capacity is scarce, 

the airline decides which passenger to accept/reject.
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Goal: only accept that request which maximizes the revenue contribution to the network:

Introduction of opportunity costs (bid-price) for each segment (FRA-ZRH, ZRH-MUC, FRA-MUC).
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Besides the evaluation of opportunity costs, the willingness 

to pay has to be evaluated to define the (revenue) optimal price.
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• Suppose the airline offers two products (classes) with                                       .

• Let the willingness to pay of        be equal to                   . 

• The airline accepts if                                                                             .

• Accepting         within class 1 results in (price-elasticity) costs of                                        . 
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For each request, the optimal price is set to be as close as possible 

to the customer`s willingness to pay.
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To minimise price-elasticity cost, i.e., minimize the risk of         buying down into class 1, the 

price-sensitivity of demand needs to be evaluated (the topic of this presentation).
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Focus topic: what are price-elasticity costs and how does LHG 

make use of them. A small experiment

Suppose we offer the same product, such as a seat on a plane, under the same 

conditions, repeatedly for a different price to N = 12 people.
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Using the collected data we are able to device (optimal) pricing 

strategies (for simplicity assume price = revenue, i.e., no cost)

Option 1 (maximize bookings): 54.5

Every passenger buys (down) for 54.5.

Option 2 (between): 149.5.

Every passenger willing to pay more then 149.5 

buys down. Demand below 149.5 is lost. 

Option 3 (maximizing revenue): 179.5

This approach is not feasible in 

practice as N as and the number of 

non-bookings for each price is 

generally unknown.

11

10

9

8        149.5 1196.0



German Data Science Days 2019
February 19th, 2019
Page 11

In practice, LHG observes bookings (=1) and collects non-bookings 

(=0) for days (single snapshot each day) when nothing is sold
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From experiment to practice: suppose one repetition of the 

experiment is the observed booking process for a flight i = 1,…,M.

(first day of sale of flight i) (last day of sale of flight i)

Non-bookings (=0) are recognised for 

flight i at days t if no booking was 

observed.

Let           denote the cumulated number of bookings for flight i at time t with                       .                          

A booking (=1) with arrival        days 

before departure
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This booking process is observed several times with different 

information on the booking- and flight-level

.  .  .

On each flight              , we observe the  number of cumulated  bookings 

at a time to departure         as  

.  .  .
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The rate               gives the average             

number of bookings.

The rate is influenced by time-depending covariates, 

such as price, subsumed in               .

LHGs statistical model assumes that each increment, i.e., the 

number of bookings during day t, is Poisson distributed.

For flight               we look at the 

incremental booking process 

at some 

at time t before departure

No. of bookings 

for flight i

at time t.

(first day of sale of flight i)

(last day of sale of flight i)
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An example of how the booking-process looks like (real data) for 

one particular flight (flight number, departure date, routing)
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The Poisson intensity λ(t) accounts for changes in booking 

intensity and depends on price and additional covariates.

• Covariates for flight i at time t with price =               are given by a covariate 

vector                                                                           .

• Index-sets                           and                           give the positions of

categorical                       and continuous                     covariates.

• For covariates that belong to     , the k-th categorical covariate takes values 

from the set                          .

This leads to the model:
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Quantifying the price effect  on the booking intensity 

given the factors                    and                    .               

To specify how the covariates influence the booking intensity, a model that 

captures all interaction effects of the continuous covariates is set:



German Data Science Days 2019
February 19th, 2019
Page 18

The booking intensity is modelled in a full factorial design, i.e., all 

main effects f(.), as well as all interaction effects f(.,.), are captured. 

Example:

• determines the general level of price-sensitivity,

• describes the general booking intensity along t,

• changes the price-sensitivity within t.

Classification of the model components: 

• Describing the volume of demand                    , 

• Influenced the slope of PRICE representing price-sensitivity 
,                     (for these functions we impose monotonicity within PRICE)
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Optimal (continuous) pricing: to optimize the price, the marginal 

revenue over opportunity cost    is maximized.

where

• the total revenue gain is defined by     

• the total opportunity costs of capacity are                    
(is zero if capacity is not a constraint/scarce)

To calculate the derivative of with respect to PRICE, we use the fact that the 

derivative of a B-Spline is a linear combination of lower order B-Splines.
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Mapping from optimal NET- to optimal PRICE-values.

Solving the maximization problem gives the optimal NET-value, which is 

mapped to the optimal PRICE-value by:

The difference between NET and PRICE is described by a fix-amount  and a 

variable factor      (VAT) describing how DIFF depends upon PRICE (for non-

domestic flights there is no VAT).
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The optimal closed form solution results as the sum of marginal 

revenue and marginal costs.

If  is taken to be linear in PRICE the maximization-problem has the 

closed-form solution:

where                                     correspond to the first derivative with respect to 

PRICE.  
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Results: conditional demand estimates.

where:
• YDAY gives the day of the year, taking values from 1,….,365,

• DTIME is the departure time (local) of a flight,

• BDAY is the booking day of the week, taking values Monday,…,Sunday,

• t indicates the number of days before departure.

Conditional estimates of smooth effects for:
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Results: conditional demand estimates.

Parameter estimates for route 1 and

departure day = Tuesday
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Results: conditional demand estimates.
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Results: estimated price derivatives.

(AGAM corresponds to the reference model whereas 2SAGAM to the reference model where the 

potential endogeneity of the price variable has been accounted for.) 

Route 1 Route 2
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Results: prediction of optimal price values.

Route 1 Route 2
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The price elasticity model in action (user screen)

Elasticity model 

controls prices (estimation 

of willingness to pay) for all of 

LHGs continental point-to-point routes.
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The price elasticity model in action (user screen)

Demand intensity increases

going towards the day of departure 

(DBD = 0). Change in slope is less

obvious looking at 3D graphics.
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The price elasticity model in action (user screen)

Much of LHGs distribution is still done via channels depending on booking-classes.

Dynamic pricing is achieved by the adjustments of net-values to reduce its value 

below zero to make the class “unavailable for booking”.
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THANK YOU
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The unknown functions are approximated by the weighted sum of 

local P-spline basis functions (P-splines)

Univariate functions (example):  

is approximated by where the matrix

is represented by B-spline basis functions .  

Bivariate functions (example):

is replaced by the where is the box-

product (row-wise kronecker-product) of its marginals.

Model parameters are therefore where

• concerns the parametric covariates and

• is the

coefficient vector for the unknown functions which weight the corresponding

B-spline basis functions.
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The model parameters are derived by 

penalized maximum likelihood estimation.

We maximize the penalized log-likelihood:

where the model log-likelihood equals to:                                                               

Smoothing matrices D result from taking differences of neighboring weighting 

coefficients     (Eilers and Marx,1996).

The optimal penalty parameters

are selected by minimizing: 


